1. Applied Math and Machine Learning Basics[P29-P165)
    1. Linear Algebra [31-53)
    2. Probability and Information Theory [53-80)
    3. Numerical Computation [80-98)
    4. Machine Learning Basics [98-165)
  2. Deep Networks: Modern Practices [165-488)
    1. Deep Feedforward Networks [165-228)
    2. Regularization for Deep Learning [228-274)
    3. Optimization for Training Deep Models [274-330)
    4. Convolutional Networks [330-373)
    5. Sequence Modeling: Recurrent and Recursive Nets [373-423)
    6. Practical Methodology [423-445)
    7. Applications [445-488)
  3. Deep Learning Research [488-721)
    1. Linear Factor Models [491-504)
    2. Autoencoders [504-528)
    3. Representation Learning [528-560)
    4. Structured Probabilistic Models for Deep Learning [560-592)
    5. Monte Carlo Methods [592-607)
    6. Confronting the Partition Function [607- 633)
    7. Approximate Inference [633-656)
    8. Deep Generative Models [656-723)