-
Applied Math and Machine Learning Basics[P29-P165)
- Linear Algebra [31-53)
- Probability and Information Theory [53-80)
- Numerical Computation [80-98)
- Machine Learning Basics [98-165)
-
Deep Networks: Modern Practices [165-488)
- Deep Feedforward Networks [165-228)
- Regularization for Deep Learning [228-274)
- Optimization for Training Deep Models [274-330)
- Convolutional Networks [330-373)
- Sequence Modeling: Recurrent and Recursive Nets [373-423)
- Practical Methodology [423-445)
- Applications [445-488)
-
Deep Learning Research [488-721)
- Linear Factor Models [491-504)
- Autoencoders [504-528)
- Representation Learning [528-560)
- Structured Probabilistic Models for Deep Learning [560-592)
- Monte Carlo Methods [592-607)
- Confronting the Partition Function [607- 633)
- Approximate Inference [633-656)
- Deep Generative Models [656-723)