-
Intro
-
"While there have been a number
of insurance entities attempting to harness AI to their processes, the level of adoption has not been as
straight forward as has been suggested."
- OECD (2020), The Impact of Big Data and Artificial Intelligence (AI) in the Insurance Sector
- This report benefited from the input of OECD member contributions, which includes ministries of finance, insurance supervisors, and private sector associations, and is a result of discussions in the Committee
over a period of one year.
-
User experience
-
agentes de inteligencia artificial cognitiva (AI)
- colaboran con agentes reales en más de tres millones de llamadas, reduciendo la duración de llamadas y logrando aumentos de la tasa de resolución en la primera llamada, aumentando de 67% a 75%
- Debido a su compleja naturaleza, los seguros se basan en un proceso de "resolución de preguntas", razón por la cual ha estado dominado por agentes. Ahora, las compañías podrán proporcionar conversaciones con los clientes en tiempo real.
-
Ventas y distribución
-
impulsar la generación de oportunidades
- este nuevo enfoque debiera permitir que los consumidores reciban ofertas “a medida” o “personalizadas”, basadas en sus perfiles individuales de riesgo, conductas y elecciones, y no en sus cohortes, como ha sido la norma hasta ahora. Y estas ofertas debieran poder ser recibidas, por ejemplo, a través de Chatbots
- automatizar el marketing dirigido
- analizar la rentabilidad del producto del subsegmento
- dar soporte de suscripción mediante el big data
-
aumentar las ventas
- volver a involucrar a aquellos inactivos
- ventas cruzadas con ellos
-
el producto correcto en el momento oportuno
- Cuando el cliente pregunte, de manera proactiva, cuál es la puerta de embarque, la aerolínea tendrá una oportunidad para promover los seguros de viaje relevantes que el pasajero puede comprar con solo un clic
-
Customer profiling
-
IoT
-
Smart fridge
- Can order food
-
Tell me what do you food and I tell you how healthy you could be
- Not only from a smart bridge, but through retail food stores alliances
- Fitness apps
-
Behavior identification apps
-
Almost nay smartphone can detect what type the user is doing
- walking
- running
- in car
- in bicycle
-
Robo-advice
- investment management
- provide quotes with automated advice and offerings calculated through algorithms
-
Automated advice could assist pockets of population that do not have access to financial advice to gain input in a more cost efficient way than a human advisor
-
developing a financial plan addressing multiple goals
- retirement
- protection needs
- estate planning
- health/long-term care coverage
- Robo-advice has the privacy which some may feel more comfortable with given the sensitivity in discussing money matters
-
Risks
- Insurance start ups such as Lemonade and PolicyGenius use AI to support their policy offerings. AI can
- simplify and tailor policy offerings to match the needs and financial situation of the policyholder. A number
- of start ups are integrating AI to their processes, and their success will affect how the wider insurance
- sector introduces AI into its businesses as well.
-
Claims management
-
The nationwide cost of inpatient treatment makes up 30 to 40 percent of a typical health insurer's total budget; on average, however, between 8 and 10 percent of all claims received are incorrect.
- McKinsey says that Smart audit algorithms enable reliable identification of those, and only those, claims that are in fact incorrect
- AI processes can speed up claims payment significantly
- companies like Claim Technology
have been providing machine learning systems for claims handling
- Chinese insurer Ping An thinks it has found in AI the answer to the painful clams process
-
Role of AI and related technologies
-
The conventional approach to claims management based on an inflexible rule book has been made obsolete by intelligent algorithms that learn from historical cases and continuously evolve
- Digital records should exist for at least the last two years, and ideally more
-
Smart systems for supporting hospital claims management are typically developed in five steps:
-
compile and preprocess data
- BigData & DataScience
-
analyze data
- BigData & DataScience
- Statistical models
- Descriptive Analytics
- At this stage, it is already possible to determine correlations between certain diagnoses and successful reductions
-
develop the model
- Predictive Analytics
- Machine Learning
- Deep Learning
-
evaluate the results
- model benchmarked in terms of specific metrics
- pilot the approach
-
Benefits
- First estimates indicate that German health insurers could save in about EUR 500 million each year this way
-
Thanks to automated prioritization, administration staff no longer have to check every claim deemed unusual, but can instead focus on those cases that have the greatest reduction potential and the best prospects for successful intervention
- additional costs for redundant audit and rejection processes are eliminated, while available resources can be focused on the "right" cases
- the system frees up capacity among administration staff and auditors so that they can correctly pinpoint reduction potential and properly prepare intervention cases
-
Risks
- there are also concerns that the rapidity can compromise the optional payment, as well as potentially being open to fraudulent claims
- it is not clear whether current machine learning would be able to handle complex analytical
and sorting work, such as assessment of insurance claims for car crashes or burglaries.
Humans had to override the computer’s decision too often in the past.
-
Personalized offers
- development of customized offers for patients suffering from chronic diseases or for identifying clinical pathways that fail to adhere to guidelines
-
Siniestros
- el sector de seguros será más rápido y más puntual en el momento de la verdad, procesará imágenes, voces y toda la información que sea necesario enviar y hasta podría pagar más rápidamente los siniestros
-
Insurtech
- aseguradoras nacidas en la web
- no dependen de grandes y costosas estructuras de canales de distribución
-
Canales de agentes
- Agentes de reclutamiento: ¿qué hace un buen agente? ¿Cuánto dinero percibe un agente?
- Determinar el valor del tiempo de vida de los agentes y clientes: ¿quiénes serán los mejores agentes y clientes del futuro?
- Identificar las características de los agentes exitosos y los gerentes de agencias: ¿quién es un buen agente o líder de agencia?
- Analizar los tipos de personalidad de los clientes: ¿qué compran los clientes? ¿En qué momento de su vida compran? ¿Cuánto suelen gastar?
- Analizar agentes de coincidencia del perfil que son clientes para garantizar la mayor posibilidad de éxito: ¿Qué agente vende mejor a qué cliente?