-
Workflow
- Understand the business problem at hand
- Gather the raw data
- Explore, transform, clean, and prepare the data
- Create and select models based on the data
- Train, test, tune and deploy the model
- Monitor the model’s performance
-
Blitzstein & Pfister’s workflow
- Ask an interesting question
- Get the data
- Explore the data
- Model the data
- Communicate and visualize the results
-
Aakash Tandel’s Workflow
- Objective
- Importing Data
- Data Exploration and Data Cleaning
-
Modeling Data
- Baseline Modeling
- Secondary Modeling
- Communicating Results
-
Aakanksha Joshi’s Workflow
- Connect & access data
- Search and find relevant data
- Prepare for data analysis
- Build/train/deploy models
- Monitor/analyze/manage models
-
Philip Guo’s Workflow
- Preparation of the data, then alternating between
- Analysis
- Reflection to interpret the outputs, and finally
- Dissemination of results in the form of written reports and/or executable code
-
CRISP-DM
- CRoss-Industry Standard Process for Data Mining
-
six iterative phases
- Business understanding
- data understanding
- data preparation
- modeling
- evaluation
- deployment
-
OSEMN
- Obtain
- Scrub
- Explore
- Model
- iNterpret
-
TDSP
-
Team Data Science Process
- Business Understanding
- Data Acquisition and Understanding
- Modeling
- Deployment
- Customer Acceptance
-
Sources
- Data Science Workflow — Experiment Tracking
- What is a Data Science Workflow?
-
More my mindmaps
- Описываем задачу/гипотезу/метрику для ML проекта
- Строим Дашборд правильно
- О Сегментировании через 5W2H
- HADI. Let's Test Hypothesis (based on PDCA) (v2)
- My TOP 5 Python Libraries for Data Science
- Статистика: Задача- Метод. A/B Testing. Statistical tests (Ru, En)
- Some notes about decision trees
- ML-продукты. Разбираем основы
- Some notes about Exploratory Data Analysis (Python and Pandas)
- Some notes about A/B Testing (V 2.0)