-
Connection
-
Let's connect to a data warehouse and configure a data source
- Data ‣ Databases and select the + Database
-
Create a new database
- database name
- SQLAlchemy URI
- Test Connection
-
Dataset
-
Let's select specific tables (Dataset)
- Data ‣ Datasets and select the + Dataset
- Select your Database, Schema and Table
-
Customizing column properties if you need
- Is the column temporal?
- Is the column filterable?
- Is the column dimensional?
-
Define Superset semantic layer
-
2 types of computed data
- Virtual metrics
- Virtual calculated column
-
Chart
-
Explore
- no-code
- Select your dataset ‣ select the chart ‣ customize the appearance (define chart type and more) ‣ publish
-
SQL Lab
- SQL IDE for cleaning, joining, and preparing data for Explore workflow
-
Dashbord
- your can save chart add it to an existing dashboard
- create new dashboard add chart(s) to a new dashboard
-
Use SQL Lab
- SQL Lab >> SQL Editor
- write a sql query and run it
-
Why?
- Open source (!!!)
- Community!
- Pre built visualizations
- we can use dashboards into our data applications
-
use can use locally with one command using Docker Compose
- $ docker-compose -f docker-compose-non-dev.yml up
-
SOURCES
- Apache Superset Tutorial
- What is Apache Superset?
- Exploring Data in Superset